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Stereospecific Conversion of Diosgenin to a-Ecdysone 

Sir. 
a-Ecdysone (1) was the first insect moulting hormone to 

be isolated,1 characterized,2 and synthesized.3~6 In the fol­
lowing we report its synthesis from diosgenin (2), in which 
the correct configuration at C-22 is generated by stereospe­
cific reduction of the diosgenin spiro-ketal group. 

Okauchi et al.7 reported that the cocoon spinning of a 
silk-worm colony can be synchronized when ecdysones are 
added to the diet (15 mg per 20 000 larvae) at a particular 

stage during the fifth instar. Extensive field tests carried 
out since have verified this, and further have shown that si­
multaneous application of lauryl alcohol repels larvae, auto­
matically moving them towards the nesting area where 
spinning of high-quality cocoon is assured.8 As far as we are 
aware, this is the first usage of ecdysones in insect control 
(in a positive sense). 

The mixed hydride (LAH-AICI3) reduction of diosgenin 
is known to give dihydrodiosgenin (3) in excellent yield.9 

Examination of molecular models revealed that since the 
13-Me would impose a greater steric hindrance than the 
20-Me to a group approaching C-22, the dihydro-derivative 
3 should possess the 22R configuration as shown.10 A re­
ductive cleavage of the C-16-O bond would then lead to a 
22-OH having the same absolute configuration as that of 
the ecdysones,2'1' a step which was achieved in transforma­
tion 15 — 16 (Scheme I). 

Hydroboration-oxidation of dihydrodiosgenin ditosylate 
(4), mp 119.5-120.5 0 C, gave 6-keto ditosylate (5), mp 
133-134 0 C, which when heated in DMF with LiBr pro­
duced 6:12 NMR 8 5.63, br s, 2-H, 3-H; 3.37, d, J = 5 Hz, 
26-H; 0.83, s, 19-H; 0.73, s, 18-H. Prevost-Woodward hy-
droxylation13 of 6 gave the 2-acetoxy-3-hydroxy derivative 
(7), mp 154-154.5 0 C, which was acetylated to 8, mp 
147.5-148 0 C. When crystalline 8 was treated with bro­
mine under equilibrating conditions, 7a-bromo 6-ketone (9) 
was obtained in high yield as reported earlier for an analo­
gous system.13 Dehydrobromination of 9 in boiling DMF 
with Li2CC>3 provided the 7,25-diene-6-one (10), mp 
195.5-197 0 C (NMR 8 5.72, distorted t, 7-H; 1.03, s, 19-H; 
0.74, s, 18-H) in fair yield along with 4,25-dien-6-one (11), 
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mp 125-131 0 C (NMR 5 5.87, dd, J = 2.2 and 0.5 Hz, 
4-H; 1.15, s, H-19; 0.83, s, 18-H) as a minor product (18% 
yield).14 Oxymercuration-demercuration of 10 produced 
the tertiary alcohol 12, mp 216-218 0 C, 1 5 which was con­
verted to the triacetate 13, mp 199-201 0 C, by Oppenauer's 
method.16 Selenium dioxide in dioxane achieved a clean hy-
droxylation of 13 to yield the hydroxy enone (14) mp 196-
197.5 0 C: NMR 8 5.86, d, J = 2.5 Hz, 7-H. Dehydration to 
the 7,14-diene-6-one (15) (NMR 8 6.18, d, J = 2.5 Hz, 
7-H; 5.84, d, J = 2.5 Hz, 15-H; uv (MeOH) 271 nm, t 
10 300) occurred readily when a dry pyridine solution of 
crude 14 was treated with trifluoroacetic anhydride at low 
temperature;17,18 the hypsochromic uv shift of ca. 25 nm in 
15 as compared to standard 7,14-dien-6-one values shows 
that the dienone chromophore is distorted, presumably by 
the fused tetrahydrofuran ring. 

Cleavage of the C-16-O bond was accomplished when a 
pure sample of 15 was treated with excess zinc powder in 
vigorously stirred boiling acetic acid in the absence of oxy­
gen to yield the desired 8(14),15-diene-6-one, (16) (NMR 5 
6.32 (16-H) and 6.05 (17-H), ABq, / = 6 Hz; 3.30 and 
2.90, ABq, J = 16 Hz, 7-H) a product of concomitant ace­
tyl migration from 25-OH to 22-OH.19 The crude product 
16 was cleanly hydrogenated to the 6,8(14)-enone (17), 
(NMR 8 3.10 and 2.85, ABq, 7 = 1 6 Hz, 7-H) which was 
photooxygenated20 to the hydroperoxy enone system (18) 
(NMR 5 5.90, d, J = 2 Hz, 7-H; 0.72, s, 18-H; 0.90, s, 21-
H). Sodium iodide reduction afforded 5-epi-a-ecdysone 
2,3,22-triacetate (19), mp 225 0 C: NMR 8 5.89, d, J = 2 
Hz, 7-H; 0.66, s, 18-H; 0.94, s, 21-H. a-Ecdysone (1), mp 
170 0 C (hydrate), was obtained after basic hydrolysis-ep-
imerization4b in a total yield of 1% from diosgenin.21 

We believe that the procedure described is adaptable to a 
number of interesting ecdysone analogues, some of which 
are now being bioassayed for ecdysone or antiecdysone ac­
tivity, and to the large scale synthesis of a-ecdysone. Fur­
thermore, the scheme allows an easy preparation of [15,16-
3H2]-a-ecdysone, which should be valuable for metabolic 
studies of insect moulting hormones since the labels are lo­
cated on unreactive nuclear positions. An alternative route 
via a 26,27-bisnor-25-methoxycarbonyl side chain which 
will afford [15,16-3H2, 26,27-14C2]-a-ecdysone has been 
completed with cold materials.22 
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Visible Light to Electrical Energy Conversion. Stable 
Cadmium Sulfide and Cadmium Selenide Photoelectrodes 
in Aqueous Electrolytes 

Sir: 

We wish to report the first sustained conversion of low 
energy visible light (>1.7 eV) to electrical energy using wet 
photoelectrochemical cells where there are no net chemical 
changes in the system. 

Irradiation of an n-type semiconductor electrode in a cell 
as depicted in Scheme I can result in a photocurrent.1 Use 
of n-type CdS2 or CdSe3 results in photoanodic dissolution 
to yield Cd2 + ions and elemental S or Se. Such a result is 
typical for semiconductor photoelectrodes with the excep­
tion OfTiO2 ,4 '9 SnO 2 , ' 0 SrTiO3,11 and KTaO3 .12 Unfortu­
nately, these oxides all have large band gaps (>3.0 eV) and, 
consequently, do not respond to visible light. Both CdS 
(band gap 2.4 eV)2 and CdSe (band gap ~1.7 eV)2 respond 
to a major fraction of the visible spectrum, but the irrevers­
ible decomposition encountered in their use as photoelec­
trodes is a serious hurdle in practice. 

An approach to "stabilization" of photoelectrodes is to 
employ an electrochemically active electrolyte such that its 
redox chemistry occurs at the expense of electrode decom­
position. This approach has proven to yield mixed results. 
Oxidation of I - occurs at an irradiated CdS anode, but the 
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